Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation
نویسندگان
چکیده
Fluorescence imaging has revolutionized biomedical research over the past three decades. Its high molecular specificity and unrivaled single molecule level sensitivity have enabled breakthroughs in a variety of research fields. For in vivo applications, its major limitation is the superficial imaging depth as random scattering in biological tissues causes exponential attenuation of the ballistic component of a light wave. Here we present fluorescence imaging beyond the ballistic regime by combining single cycle pulsed ultrasound modulation and digital optical phase conjugation. We demonstrate a near isotropic 3D localized sound-light interaction zone. With the exceptionally high optical gain provided by the digital optical phase conjugation system, we can deliver sufficient optical power to a focus inside highly scattering media for not only fluorescence imaging but also a variety of linear and nonlinear spectroscopy measurements. This technology paves the way for many important applications in both fundamental biology research and clinical studies.
منابع مشابه
Fluorescence microscopy beyond the ballistic regime by ultrasound pulse guided digital phase conjugation
Fluorescence microscopy has revolutionized biomedical research over the past three decades. Its high molecular specificity and unrivaled single molecule level sensitivity have enabled breakthroughs in a variety of research fields. For in vivo applications, its major limitation is the superficial imaging depth as random scattering in biological tissues causes exponential attenuation of the balli...
متن کاملBreaking the spatial resolution barrier via iterative sound-light interaction in deep tissue microscopy
Optical microscopy has so far been restricted to superficial layers, leaving many important biological questions unanswered. Random scattering causes the ballistic focus, which is conventionally used for image formation, to decay exponentially with depth. Optical imaging beyond the ballistic regime has been demonstrated by hybrid techniques that combine light with the deeper penetration capabil...
متن کاملDeep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light
Fluorescence imaging is one of the most important research tools in biomedical sciences. However, scattering of light severely impedes imaging of thick biological samples beyond the ballistic regime. Here we directly show focusing and high-resolution fluorescence imaging deep inside biological tissues by digitally time-reversing ultrasound-tagged light with high optical gain (~5×10(5)). We conf...
متن کاملLensless two-photon imaging through a multicore fiber with coherence-gated digital phase conjugation.
We performed near-diffraction limited two-photon fluorescence (TPF) imaging through a lensless, multicore-fiber (MCF) endoscope utilizing digital phase conjugation. The phase conjugation technique is compatible with commercially available MCFs with high core density. We demonstrate focusing of ultrashort pulses through an MCF and show that the method allows for resolution that is not limited by...
متن کاملTurbidity suppression from the ballistic to the diffusive regime in biological tissues using optical phase conjugation.
We describe the amplitude and resolution trends of the signals acquired by turbidity suppression through optical phase conjugation (TSOPC) with samples that span the ballistic and diffusive scattering regimes. In these experiments, the light field scattered through a turbid material is written into a hologram, and a time-reversed copy of the light field is played back through the sample. In thi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2012